SwiftCarbon was launched in Cape Town, South Africa, in 2008 by the former English-South African professional cyclist Mark Blewett, who aimed to build a bike with an exceptional riding.
The brand started with a local team, developing and selling top carbon frames. First in South Africa and after around the world, year over year, the company grew up and the team was changing from local to multicultural and wide geographic group, creating the need to build a new headquarter and bikes production facilities.
In this new brand strategy, came the decision of selling in the most aggressive market in the world: Europe.  If the bikes are at the level of the best, why not bet on the old continent too? Road, MTB and Time Trial, the brand already has evidence given. Victories in the triathlon ITU world circuit and bronze medal in the Olympic Games (Rio de Janeiro) with Henri Schoeman. Winners of Worldtour circuit stages through Team Drapac or participation in the Cape Epic or Ironman, our bikes, are designed by cyclists for cyclists. SwiftCarbon is produced from high quality carbon by developing innovation-oriented skills based on the principles of value creation and social and environmental responsibility in international markets, providing products tailored to the requirements of athletes.


Racing is part of our DNA. Racing is part of our history. Founded by an ex-professional and always supported by professional athletes, we have a great understanding of what works in a bike and what doesn't.
We rely on experienced engineers but the feedback from the pro’s is unique. Here you can find part of our history and the riders and teams who tested the bikes. The riders who relied on us.

Jonathan Cantwell (Australia)

Cantwell was an Australian professional cyclist who ride for UCI Professional Continental Team Drapac. His grand tour début was in the 2012 Tour the France.

Team BCX (South Africa)

South Africa's top cycling team BCX was sponsored by SwiftCarbon in 2017 for road and MTB races.

Adriaan Louw (South Africa)

South African cyclist Adriaan Louw, who represented Contego Cycling Team during the ABSA Cape Epic, in South Africa, was sponsored by SwiftCarbon in 2016.

Luke Evans (South Africa)

South African cyclist Luke Evans, who represented Contego Cycling Team during the ABSA Cape Epic, in South Africa, was sponsored by SwiftCarbon in 2016.

Richard Branson (UK)

SwiftCarbon and Virgin Active joined synergies and developed the customized SwiftCarbon Ultravox limited edition in 2015.

Team Drapac (Australia)

The professional cycling team Drapac was sponsored by SwiftCarbon in 2014. SwiftCarbon developed a customized Ultravox Ti. 

NFTO Team (UK)

NFTO was a British UCI Continental team. "Not For The Ordinary". Different approach to the cycling race scene who moved a lot of fan's. The team was sponsored by SwiftCarbon in 2014.


SwiftCarbon is a new kind of bicycle company that was born from a genuine love and passion for cycling and to develop the best bikes in the world. Swift implies "high speed", "fast" and "velocity". There are many factors to define this. We believe that the professional factor holds the greatest value in the frame design equation.
What sets SwiftCarbon apart is how the bicycles should ride. For us, the beauty of a bike is not just what it seems, it's how it feels too. Tuning the best quality of steering and handling on our bikes means that sometimes we have to let go of the latest trends by creating our unique designs. We strive to develop bikes for true riders, always keeping the passion for cycling for all conditions and with a broad vision, because a bike you like to ride is the one you like to pedal frequently and quickly.


The design process creating perfection.

De-mystifying carbon fibre 
The material we call carbon fibre is actually a composite of different types of carbon filaments held together by a resin. Just as there are different alloys of aluminium and steel, so there are numerous types of carbon fibre filaments. All SwiftCarbon bikes use a combination of T700, 800 and 1000 filaments, to deliver the superior ride quality of every bike. These different kinds of filament can be combined in different ways. Uni-directional (UD) carbon fibre has all the strands running the same way - it's very strong in one direction, less so in others. Woven carbon has interwoven strands at 90 degrees to one another, making it strong in both directions. Which is used and where depends on the desired characteristics of the frame. Keeping a tight range means that we can invest the time needed to get each frame as good as it can be. For us, the quality of the product is paramount - get that right, and people will buy it.
The development of every SwiftCarbon product starts with a vision of what the product has to do. Our unique design process spans continents. Having identified the desired attributes, sketches and concepts are swapped between our designer in Europe and our engineer in South Africa. Bicycle design is a balancing act, juggling often conflicting requirements. A frame needs to handle accurately and be stiff under power, but also deliver a comfortable ride. lt needs to be strong, yet light. And it must look good, too. Drawings become plans and computer models, which become prototypes to be tested in real action and in laboratory.

Finite Element Modelling
One of the unique benefits at different types of fibre can be placed in varying orientations within a frame, putting strength exactly where it's needed. Using Finite Element Modelling (FEM) to visualise the loads on frames on computer, we can experiment with different materials, lay-ups and structures without having to build numerous physical prototypes.
With FEM, we can simulate the loads from riding and see exactly how those loads will affect a frame design. This step is essentially Finite Element Analysis (FEA), which not long ago was state of the art. FEM goes further, though, allowing us to add, remove or change material and refine the design virtually, testing as we go along. Once a frame design is performing as we want it in FEM, we know it's worth making a physical prototype for real-world testing.

EPS Moulding System
Making a carbon fibre frame involves compressing layers of carbon weave and epoxy resin into a mould to get the desired shape. Traditionally, inflatable bladders are used inside the frame to force the material into the mould, but because the shape of a bladder can't be finely controlled there can sometimes be wrinkles or inconsistent thickness in the finished frame. To avoid this, we use expanded polystyrene - essentially the same stuff that cycling helmets are made from.
We can make EPS formers to the exact shape we want before laminating carbon fibre around them and placing the whole lot in a mould. When heated, the individual beads in the EPS formers swell. Out in the open they'd reach 40 times their original size but constrained by the mould they exert pressure on the inside of the carbon fibre, pushing it into exactly the desired shape with consistent thickness and no wrinkles.

Carbon System
But carbon fibre isn't just carbon fibre: woven carbon filaments by themselves aren't very useful. What turns carbon fibre from loopy sheets to stiff, resilient frames is epoxy resin. The resin binds the layers of carbon fibre together to form a composite structure. We use Carbon Nano Tech (CNT) reinforcement in the resin for our frames. These molecular-level cylindrical structures can strengthen a product significantly, but success relies on careful manufacturing.
These molecular-level cylindrical structures can strengthen a product significantly, but success relies on careful manufacturing. lt's easy for the tubes to clump together, leading to inconsistencies. Our construction technology gives us precise control of the distribution of resin in the carbon layers, ensuring that the nanotubes can do their job - giving a stiffer and more durable frame.

Free exchange

Free packaging

6 Years Warranty

Product added to compare.

We use cookies to give you the best experience possible.
By continuing we’ll assume you’re on board with our Privacy policy.